

US Army Research Laboratory

Bruce Burns Al Horst Ed Schmidt Dennis Viechnicki

Focusing Technology Innovation

... Smaller, Smarter & Lighter

Army Research Laboratory

- ☐ Insensitive High-Energy Munitions
- **□** Smart Munitions
- Warheads and Projectiles
- ☐ Lightweight Ordnance

- ☐ KE Active Protection
- □ Vehicle Protection
- □ Personnel Protection
- □ Robotics
- ☐ Composites Applications
- □ Enabling Materials

ElectroThermal Chemical (ETC) Propulsion

ETC is a hybrid propulsion concept using both electrical and chemical energy to provide enhanced performance

ETC Benefits

ETC Temperature Compensation

ETC Plasma Ignition

ETC

- Precisely Ignites High Energy Propellants
- Temperature Compensation
- Compatible with Projectiles

ETC Precision Ignition

PI: Dr. William Oberle

Technical approach to ETC

Physics of Failure: In-Bore Integrity

G-Hardened Electronics

Validate computations with gun launches

Advanced packaging reduces Chip surface area by 25/1

Built into tank projectile and survives 30,000 g's

PI: Mr. Dave Hepner

Warheads and Projectiles

PI: Mr. Randy Coates

Metal Matrix Composites

3M/DARPA program provides low-cost, reliable fiber production

Projectile shell 50% lighter than steel with parasitic volume 67% less than graphite composite

Soldier Technologies

Conformal Antenna for Helmet

Electroceramics

C/B Protective Clothing

- Nanofibers
- Perm Selective Membranes
- Nanoreactor Coatings

Compact Power Source

Hand Held Sensors

- C/B Detection (dendrimers)
- Water Quality (MIP)

Flexible Extremity Protection

Ltwt Ballistic Helmet

- Carbon Nanotubes
- Nanofibers
- Nanoparticulates

Ballistic Face Shield

- Polymer Layered Silicates
- Multi layer polymers

Compact, Ltwt Weapon

Nanocomposites

Protective Skin Creams

Nanoreactors

Ultra-Ltwt, Ballistic Protection

Ultra-lightweight, Multi-functional Materials

Personnel Protection

Improve body armor systems against conventional and emerging ballistic threats.

- Lightweight and Conformal
- Multiple Hit Ballistic Protection
- Reduce Blunt Force Trauma (Fight Through)
- Affordable for Universal Fielding

PI: Mr. Tom Haduch

Body Armor

Transparent Face Shield

Ultra-lightweight Flexible Materials for Extremities Protection

Battlefield Threats

- •Ballistic
 - •Fragments
 - Schrapnel
 - •Flechettes
 - •Small Arms Fire
- Blast
- Cut & Puncture
 - •Razor Wire
 - Knives & Bayonets
 - •Glass
- Environment
 - •Flame
 - Extreme Heat/Cold
 - •CB

Current technology is effective but imposes physiological stress on the soldier with limited extremity protection.

Novel Silk-like Biopolymer-Ceramic Hybrid Fibers Deflection, Penetration, Cut, Puncture Resistance

Cross-linked Micellular, Impact-triggered
Drug Delivery

Medical First Response

Impact Triggered,
Nanostructured
Polymer Hybrids
Penetration,
CB, Signature

PI: Dr. Dawn Crawford

Robotics Activities: Demo III

Technology Development

- Sensors
- Perception Algorithms
- World Model
- Planning Algorithms
- Soldier-Machine Interface

Engineering Evaluations – Quantitative System Characterization

Data Collection -

Developing new capabilities by getting out into the field and finding out what we don't know

Troop Operation & Feedback – Exercise technology with troops on realistic terrain

Conclusion

Together we're solving problems for the future soldier.

DEPENDINE S

ORF CONIO

